|
Manuel Endres, professor of physics at Caltech, specializes in finely controlling single atoms using devices known as optical tweezers. He and his colleagues use the tweezers, made of laser light, to manipulate individual atoms within an array of atoms to study fundamental properties of quantum systems. Their experiments have led to, among other advances, new […]
University of Illinois Physics Professor Paul Kwiat and members of his research group have developed a new tool for precision measurement at the nanometer scale in scenarios where background noise and optical loss from the sample are present.
Go to Source
Magnets and superconductors go together like oil and water—or so scientists have thought. But a new finding by MIT physicists is challenging this century-old assumption.
Go to Source
An international research team led by the Paul Scherrer Institute PSI has measured the radius of the nucleus of muonic helium-3 with unprecedented precision. The results are an important stress test for theories and future experiments in atomic physics.
Go to Source
A research team, led by Professor Junhee Lee from the Graduate School of Semiconductor Materials and Devices Engineering at UNIST, has demonstrated through quantum mechanical calculations that charged domain walls in ferroelectrics—once thought to be unstable—can, in fact, be more stable than the bulk regions.
Go to Source
Scientists at Paderborn University have made a further step forward in the field of quantum research: for the first time ever, they have demonstrated a cryogenic circuit (i.e. one that operates in extremely cold conditions) that allows light quanta—also known as photons—to be controlled more quickly than ever before.
Go to Source
[…]
A new study reveals a fresh way to control and track the motion of skyrmions—tiny, tornado-like magnetic swirls that could power future electronics. Using electric currents in a special magnetic material called Fe₃Sn₂, the team got these skyrmions to “vibrate” in specific ways, unlocking clues about how invisible spin currents flow through complex materials.
Go […]
What if the magnon Hall effect, which processes information using magnons (spin waves) capable of current-free information transfer with magnets, could overcome its current limitation of being possible only on a 2D plane? If magnons could be utilized in 3D space, they would enable flexible design, including 3D circuits, and be applicable in various fields […]
When two-dimensional electron systems are subjected to magnetic fields at low temperatures, they can exhibit interesting states of matter, such as fractional quantum Hall liquids. These are exotic states of matter characterized by fractionalized excitations and the emergence of interesting topological phenomena.
Go to Source
Plasma—the electrically charged fourth state of matter—is at the heart of many important industrial processes, including those used to make computer chips and coat materials.
Go to Source
A recent study has mathematically clarified how the presence of crystals and gas bubbles in magma affects the propagation of seismic P-waves. The researchers derived a new equation that characterizes the travel of these waves through magma, revealing how the relative proportions of crystals and bubbles influence wave velocity and waveform properties.
Go to Source
[…]
Laser frequency combs are light sources that produce evenly spaced, sharp lines across the spectrum, resembling the teeth of a comb. They serve as precise rulers for measuring time and frequency, and have become essential tools in applications such as lidar, high-speed optical communications, and space navigation. Traditional frequency combs rely on large, lab-based lasers. […]
In conventional heat-assisted magnetic recording (HAMR), a laser is used to locally heat the recording medium to facilitate data writing. However, the thermal energy applied is largely dissipated within the medium and does not contribute directly to the recording efficiency. Moreover, this high-temperature process consumes substantial energy and raises concerns regarding the magnetic and physical […]
With the declared aim of measuring matter under extreme pressure, an international research collaboration headed by the University of Rostock and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) used the high-performance laser DIPOLE 100-X at the European XFEL for the first time in 2023. With spectacular results: In this initial experiment they managed to study liquid carbon—an unprecedented […]
A research team from the Department of Energy’s Oak Ridge National Laboratory, in collaboration with North Carolina State University, has developed a simulation capable of predicting how tens of thousands of electrons move in materials in real time, or natural time rather than compute time.
Go to Source
|
|