Categories

Optical barcodes expand range of high-resolution sensor

The same geometric quirk that lets visitors murmur messages around the circular dome of the whispering gallery at St. Paul’s Cathedral in London or across St. Louis Union Station’s whispering arch also enables the construction of high-resolution optical sensors. Whispering-gallery-mode (WGM) resonators have been used for decades to detect chemical signatures, DNA strands and even […]

The end of the quantum tunnel: Exact instanton transseries for quantum mechanics

In the quantum world, processes can be separated into two distinct classes. One class, that of the so-called “perturbative” phenomena, is relatively easy to detect, both in an experiment and in a mathematical computation. Examples are plentiful: the light that atoms emit, the energy that solar cells produce, the states of qubits in a quantum […]

Enhanced superconductivity in monolayer FeSe films on SrTiO₃(001) via metallic δ-doping

Interface engineering has been proven to be effective in discovering new quantum states, such as topological states, superconductivity, charge density waves, magnetism, etc., which require atomic-scale heterostructure fabrication. Monolayer FeSe on SrTiO3 substrates has attracted intense interest owing to its remarkable interface-enhanced superconductivity.

Go to Source

Large Hadron Collider experiment zeroes in on magnetic monopoles

The late physicist Joseph Polchinski once said the existence of magnetic monopoles is “one of the safest bets that one can make about physics not yet seen.” In its quest for these particles, which have a magnetic charge and are predicted by several theories that extend the Standard Model, the MoEDAL collaboration at the Large […]

Unveiling a new quantum frontier: Frequency-domain entanglement

Scientists have introduced a form of quantum entanglement known as frequency-domain photon number-path entanglement. This advance in quantum physics involves an innovative tool called a frequency beam splitter, which has the unique ability to alter the frequency of individual photons with a 50% success rate.

Go to Source

Scientists capture X-rays from upward positive lightning

Globally, lightning is responsible for over 4,000 fatalities and billions of dollars in damage every year; Switzerland itself weathers up to 150,000 strikes annually. Understanding exactly how lightning forms is key for reducing risk, but because lightning phenomena occur on sub-millisecond timescales, direct measurements are extremely difficult to obtain.

Go to Source

[…]

Scientists simulate magnetization reversal of Nd-Fe-B magnets using large-scale finite element models

NIMS has succeeded in simulating the magnetization reversal of Nd-Fe-B magnets using large-scale finite element models constructed based on tomographic data obtained by electron microscopy.

Go to Source

Research demonstrates a new mechanism of order formation in quantum systems

Researchers Kazuaki Takasan and Kyogo Kawaguchi of the University of Tokyo with Kyosuke Adachi of RIKEN, Japan, have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it.

Go to Source

Quasi-2D spin-Peierls transition through interstitial anionic electrons in K(NH₃)₂

In a paper published in Science Bulletin, a Chinese team of scientists predicts a novel electride K(NH3)2, with interstitial electrons distributed at cages formed by six ammonia molecules and forming a quasi-2D triangular lattice. They have revealed that this material undergoes a spin-Peierls phase transition under moderate pressures.

Go to Source

IRIS beamline at BESSY II gets a new nanospectroscopy end station

The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterizing materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometers. The instrument is also available […]

Airborne single-photon lidar system achieves high-resolution 3D imaging

Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D images with a low-power laser. This advance could make single-photon lidar practical for air and space applications such as environmental monitoring, 3D terrain mapping and object identification.

Go to Source

First experimental proof for brain-like computer with water and salt

Theoretical physicists at Utrecht University, together with experimental physicists at Sogang University in South Korea, have succeeded in building an artificial synapse. This synapse works with water and salt and provides the first evidence that a system using the same medium as our brains can process complex information.

Go to Source

Demonstration of heralded three-photon entanglement on a photonic chip

Photonic quantum computers are computational tools that leverage quantum physics and utilize particles of light (i.e., photons) as units of information processing. These computers could eventually outperform conventional quantum computers in terms of speed, while also transmitting information across longer distances.

Go to Source

A molecular fingerprint beyond the Nyquist frequency

Ultrashort pulses play a significant role in spectroscopic applications. Their broad spectral bandwidth enables simultaneous characterization of the sample at various frequencies, eliminating the need for repeated measurements or laser tuning. Moreover, their extreme temporal confinement allows for temporal isolation of the sample’s response from the main excitation pulse.

Go to Source

[…]

A shade closer to more efficient organic photovoltaics

Transparent solar cells will transform the look of infrastructure by enabling many more surfaces to become solar panels. Now, materials called non-fullerene acceptors that can intrinsically generate charges when exposed to sunlight could make semitransparent organic photovoltaics easier to produce, a KAUST-led international team shows.

Go to Source