|
Topological insulators (TIs) are among the hottest topics in condensed matter physics today. They’re a bit strange: Their surfaces conduct electricity, yet their interiors do not, instead acting as insulators. Physicists consider TIs the materials of the future because they host fascinating new quantum phases of matter and have promising technological applications in electronics and […]
The Experimental Advanced Superconducting Tokamak (EAST), commonly known as China’s “artificial sun,” has achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. This accomplishment, reached on Monday, sets a new world record and marks a significant breakthrough in the pursuit of fusion power generation.
Go to Source
[…]
University of Missouri scientists are unlocking the secrets of halide perovskites—a material that’s poised to reshape our future by bringing us closer to a new age of energy-efficient optoelectronics.
Go to Source
Researchers have pioneered the use of parallel computing on graphics cards to simulate acoustic turbulence. This type of simulation, which previously required a supercomputer, can now be performed on a standard personal computer. The discovery will make weather forecasting models more accurate while enabling the use of turbulence theory in various fields of physics, such […]
For the first time ever, scientists have used a technique called “quantum squeezing” to improve the gas sensing performance of devices known as optical frequency comb lasers. These ultra-precise sensors are like fingerprint scanners for molecules of gas. Scientists have used them to spot methane leaks in the air above oil and gas operations and […]
Skoltech researchers have presented a new simple physical model for predicting the hardness of materials based on information about the shear modulus and equations of the state of crystal structures. The model is useful for a wide range of practical applications—all parameters in it can be determined through basic calculations or measured experimentally.
Go to […]
A team of researchers has discovered a new way to control the magnetic behavior of quantum materials using applied voltages. Specifically, the material lanthanum strontium manganite (LSMO), which is magnetic and metallic at low temperatures but non-magnetic and insulating when relatively warm, can be influenced by voltage.
Go to Source
Chinese researchers observed a novel quantum state of matter, counterflow superfluidity, in atomic ultracold quantum simulation experiments, the University of Science and Technology of China announced on Thursday.
Go to Source
During the last century, biologists have extensively studied Drosophila melanogaster, the common household fruit fly. It’s become one of the most popular model organisms, but not because scientists have been determined to rid kitchen fruit bowls of these summertime nuisances. It’s because their biology is highly conserved and offers invaluable clues about how multicellular organisms […]
Paper-thin optical lenses simple enough to mass produce like microchips could enable a new generation of compact optical devices. A team with researchers at the University of Tokyo and JSR Corp. fabricated and tested flat lenses called Fresnel zone plates (FZPs), but did so for the first time using only common semiconductor manufacturing equipment, the […]
The operation and performance of quantum computers relies on the ability to realize and control entanglement between multiple qubits. Yet entanglement between many qubits is inherently susceptible to noise and imperfections in quantum gates.
Go to Source
Physicists have spent more than a century measuring and making sense of the strange ways that photons, electrons, and other subatomic particles interact at extremely small scales. Engineers have spent decades figuring out how to take advantage of these phenomena to create new technologies.
Go to Source
UNSW engineers have demonstrated a well-known quantum thought experiment in the real world. Their findings deliver a new and more robust way to perform quantum computations—and they have important implications for error correction, one of the biggest obstacles standing between them and a working quantum computer.
Go to Source
Diamond, often celebrated for its unmatched hardness and transparency, has emerged as an exceptional material for high-power electronics and next-generation quantum optics. Diamond can be engineered to be as electrically conductive as a metal, by introducing impurities such as the element boron.
Go to Source
A new milestone in nuclear physics has been achieved with the direct observation of three different deformations in the atomic nucleus of lead-190 (190Pb). These deformations, associated with three distinct shapes—spherical, oblate (resembling a tomato), and prolate (similar to a watermelon)—exist simultaneously near the ground state. The findings, published in Communications Physics in January 2025, […]
|
|