Categories

Polymer microdomes reveal tunable chiral structural colors with significant implications for optical applications

Chiral-structural-color materials produce color through microscopic structures that interact with light rather than through pigmentation or dyes. Some beetle exoskeletons, avian feathers, butterfly wings, and marine organisms feature these structures naturally, producing iridescent or polarization-dependent colors. Over the last 10–15 years, scientists have made progress in developing artificial chiral-structural-color materials.

Go to Source

[…]

New study sets tighter constraints on elusive sterile neutrinos

Neutrinos have always been difficult to study because their small mass and neutral charge make them especially elusive. Scientists have made a lot of headway in the field and can now detect three flavors, or oscillation states, of neutrinos. Other flavors continue to be elusive—though that could be because they don’t even exist.

Go to […]

Unraveling the origin of extremely bright quantum emitters

Many next-generation quantum devices rely on single-photon emitters based on optically active defects in solids, known as color centers. Understanding their properties is fundamental to developing novel quantum technologies.

Go to Source

Unraveling how a ‘magnetic twist’ induces one-way electric flow

Researchers at Tohoku University, the University of Manchester, and Osaka University have made a breakthrough that has the potential to ignite the development of next-gen chiral information technology.

Go to Source

An equation of state for dense nuclear matter such as neutron stars

Neutron stars are some of the densest objects in the universe. They are the core of a collapsed megastar that went supernova, have a typical radius of 10 km—just slightly more than the altitude of Mt. Everest—and their density can be several times that of atomic nuclei.

Go to Source

Physicists find unexpected crystals of electrons in new ultrathin material

MIT physicists report the unexpected discovery of electrons forming crystalline structures in a material only billionths of a meter thick. The work adds to a gold mine of discoveries originating from the material, which the same team discovered only about three years ago.

Go to Source

How Schrödinger’s cat could help improve quantum computers

Quantum computers could be made with fewer overall components, thanks to technology inspired by Schrödinger’s cat. A team of researchers from Amazon Web Services has used “bosonic cat qubits,” to improve the ability of quantum computers to correct errors. The demonstration of quantum error correction requiring reduced hardware overheads is reported in a paper published […]

Hofstadter’s butterfly: Quantum fractal patterns visualized

A team of scientists from Princeton University has measured the energies of electrons in a new class of quantum materials and has found them to follow a fractal pattern. Fractals are self-repeating patterns that occur on different length scales and can be seen in nature in a variety of settings, including snowflakes, ferns, and coastlines. […]

Engineers achieve multiplexing entanglement in quantum network

Laying the groundwork for quantum communication systems of the future, engineers at Caltech have demonstrated the successful operation of a quantum network of two nodes, each containing multiple quantum bits, or qubits—the fundamental information-storing building blocks of quantum computers.

Go to Source

Graphene’s quantum spin injection promises energy-efficient spintronics

Researchers at the National Graphene Institute at the University of Manchester have achieved a significant milestone in the field of quantum electronics with their latest study on spin injection in graphene. The paper, published recently in Communications Materials, outlines advancements in spintronics and quantum transport.

Go to Source

Time interfaces: The gateway to four-dimensional quantum optics

A new study from the University of Eastern Finland (UEF) explores the behavior of photons, the elementary particles of light, as they encounter boundaries where material properties change rapidly over time. This research uncovers remarkable quantum optical phenomena that may enhance quantum technology and paves the road for an exciting nascent field: four-dimensional quantum optics. […]

Some fuel will get stuck in inner walls of fusion vessels: Research provides a better idea of how much

To develop a practical fusion power system, scientists need to fully understand how the plasma fuel interacts with its surroundings. The plasma is superheated, which means some of the atoms involved can strike the wall of the fusion vessel and become embedded. To keep the system working efficiently, it’s important to know how much fuel […]

Research illuminates the path to superior electro-optic performance in aluminum scandium nitride alloys

From integrated photonics to quantum information science, the ability to control light with electric fields—a phenomenon known as the electro-optic effect—supports vital applications such as light modulation and frequency transduction. These components rely on nonlinear optical materials, in which light waves can be manipulated by applying electric fields.

Go to Source

A completely new type of microscopy based on quantum sensors

Researchers at the Technical University of Munich (TUM) have invented an entirely new field of microscopy called nuclear spin microscopy. The team can visualize magnetic signals of nuclear magnetic resonance with a microscope. Quantum sensors convert the signals into light, enabling extremely high-resolution optical imaging.

Go to Source

First dark matter search using WINERED spectrograph sets new lifetime constraints

Dark matter is an elusive type of matter that does not emit, absorb or reflect light and is thus impossible to detect using conventional techniques employed in particle physics. In recent years, groups of physicists worldwide have been trying to observe this matter indirectly using advanced detectors and equipment, by detecting signals other than electromagnetic […]