|
In bird colonies, schools of fish and cycling pelotons, significant interactions occur between individuals through the surrounding fluid. These interactions are well understood in fluids such as air and water, but what happens when objects move through something like sand? It turns out that similar interactions occur in granular materials—things like soil or sand—and they […]
In an era of medical care that is increasingly aiming at more targeted medication therapies, more individual therapies and more effective therapies, doctors and scientists want to be able to introduce molecules to the biological system to undertake specific actions.
Go to Source
Combining metallic glass with the Berreman mode of epsilon-near-zero (ENZ) thin films achieves a dual-function system for infrared camouflage and thermal management within an identical wavelength region of the atmospheric window. In recent research, metallic glasses were selected for their tunable optical properties, providing adjustable emissivity for versatile thermal camouflage while maintaining effective thermal management. […]
Heat management at the nanoscale has long been a cornerstone of advanced technological applications, ranging from high-performance electronics to quantum computing. Addressing this critical challenge, we have been deeply intrigued by the emerging field of thermotronics, which focuses on manipulating heat flux in ways analogous to how electronics control electric energy. Among its most promising […]
Students learning quantum mechanics are taught the Schrodinger equation and how to solve it to obtain a wave function. But a crucial step is skipped because it has puzzled scientists since the earliest days—how does the real, classical world emerge from, often, a large number of solutions for the wave functions?
Go to Source
[…]
A research team led by Prof. Li Chuanfeng from the University of Science and Technology of China (USTC) has achieved a breakthrough in quantum photonics. They developed an on-chip photonic simulator capable of simulating arbitrary-range coupled frequency lattices with gauge potential. This study was published in Physical Review Letters.
Go to Source
[…]
Optical tweezers and related techniques provide extraordinary opportunities for research and applications in the physical, biological, and medical fields. However, certain requirements such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, and low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications.
Go to Source
The impact of a drop on a solid surface is an important phenomenon that has various applications. Especially when the drop splashes, it can cause deterioration of printing and paint qualities, erosion, and propagation of airborne virus, among others. Therefore, it is important to observe and understand the characteristics of the splashing drops of different […]
Long gone are the days where all our data could fit on a two-megabyte floppy disk. In today’s information-based society, the increasing volume of information being handled demands that we switch to memory options with the lowest power consumption and highest capacity possible.
Go to Source
Scientists from the National University of Singapore (NUS) have developed a highly effective and general molecular design that enables an enhancement in radioluminescence within organometallic scintillators by more than three orders of magnitude. This enhancement harnesses X-ray-induced triplet exciton recycling within lanthanide metal complexes.
Go to Source
To a leaf, a falling raindrop is equivalent in mass to a bowling ball dropping on a person—so how does the leaf survive? New research elucidates the raindrop’s impact and the physical dynamics that help the leaf respond, with potential applications for agriculture and renewable-energy harvesting.
Go to Source
A research group led by Prof. Yao Baoli and Dr. Xu Xiaohao from Xi’an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences have revealed a full-gray optical trap in structured light, which is able to capture nanoparticles but appears at the region where the intensity is neither maximized nor minimized. […]
Many techniques in computational materials science require scientists to identify the right set of parameters that capture the physics of the specific material they are studying. Calculating these parameters from scratch is sometimes possible but costs a lot of time and computational power. Consequently, scientists are always eager to find more efficient ways to estimate […]
Bright, twisted light can be produced with technology similar to an Edison light bulb, researchers at the University of Michigan have shown. The finding adds nuance to fundamental physics while offering a new avenue for robotic vision systems and other applications for light that traces out a helix in space.
Go to Source
[…]
Telling time in space is difficult, but it is absolutely critical for applications ranging from testing relativity to navigating down the road. Atomic clocks, such as those used on the Global Navigation Satellite System network, are accurate, but only up to a point.
Go to Source
|
|